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Background & Motivation

Though it is common to use backprop to train an artificial neural network (ANN),

backprop is generally regarded as biologically implausible. Alternatively, we can

view an ANN as a team of reinforcement learning (RL) agents, by injecting

stochastic noise to each activation unit in the ANN and treating each unit as an

RL agent that explores independently. For example, in an RL task, when

learning the policy function parametrized by an ANN, we can view the ANN as

the policies of multiple RL agents instead of a single agent:

Fig 1 Illustration of viewing an ANN as a team of agents. In the alternative view, we treat

each activation unit in an ANN as an agent. To each agent, all other agents are part of the

black-box environment. For example, to the agents on the middle layer, the actions of agents

on the first layer are considered as the state.

Nearly all state-of-the-art deep learning algorithms rely on error backpropagation, which is generally regarded as biologically implausible. An alternative way of training an artificial

neural network is through treating each unit in the network as a reinforcement learning agent, and thus the network is considered as a team of agents. As such, all units can be

trained by REINFORCE, a local learning rule modulated by a global signal that is more consistent with biologically observed forms of synaptic plasticity. Although this learning rule

follows the gradient of return in expectation, it suffers from high variance and thus the low speed of learning, rendering it impractical to train deep networks. We therefore propose

a novel algorithm called MAP propagation to reduce this variance significantly while retaining the local property of the learning rule. Experiments demonstrated that MAP

propagation could solve common reinforcement learning tasks at a similar speed to backpropagation when applied to an actor-critic network. Our work thus allows for the broader

application of teams of agents in deep reinforcement learning.

Training an ANN by REINFORCE without backprop

40-neuron RNN used in Theorem 1

Fig 4. The architecture of the Turing-complete 54-neuron RNN with two growing

memory modules. Neurons are grouped according to their respective functions. Notable

neurons include: state neurons - represent the current state; tape neurons - represent the tape

symbols near the head using fractal encoding. The remaining neurons help these two groups

of neurons to be updated correctly to simulate a TM’s transition.
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From this alternative view, we can pass the same reward from the environment

to all agents and train them by REINFORCE [1]. This learning method, which we

call global REINFORCE here, was proposed by Barto in 1985 [2]. Global

REINFORCE gives an unbiased estimate of the gradient of reward [1,3], and is

biologically plausible due to its similarity with reward-modulated STDP, a

learning rule that is observed biologically. Despite these advantages, this

learning method is seldom used in practice due to its large variance. Thus, the

goal of the paper is to reduce the variance of global REINFORCE while

retaining biological plausibility.

*Special thanks to Andrew G. Barto, who inspired this research and provided valuable comments.

MAP Propagation

We propose a novel algorithm called maximum a posteriori (MAP) propagation 

to reduce this variance effectively. Essentially, MAP propagation replaces the

hidden agents’ actions with their MAP estimates conditioned on the output agent’s

action, or equivalently, minimizes the energy function of the network while

clamping the output agent’s action, before applying global REINFORCE. The

energy function is defined as -logPr(A,H|S), the negative log probability of actions

of the output agent (A) and hidden agents (H) conditioned on the state (S).
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How does MAP propagation reduce variance?

• Two buttons available (A & B); one with reward +100; 

another with reward -100;

• 5% chance that the opposite button is sent to the 

computer;

• You pressed button A, the computer showed it received 

button B and gave you a reward of +100;

• Should you press A or B more?

Button pressed = hidden agent’s action

Button received by the computer = output agent’s action

REINFORCE: Press A more since you pressed button A => learning in the wrong direction

What if 49% instead of 5% error chance? Wrong direction in 49% of trials!

MAP Propagation: Press B more since B is the button you most likely to have pressed

 

Experiment Results

• Can be derived from REINFORCE by using MAP estimate to approximate an

expected term (approximation of Theorem 1);

• For normally distributed units, MAP propagation is equivalent to backprop with

the reparameterization trick after minimizing the energy (Theorem 2);

• With a variant that can be applied to train critic networks (Theorem 3);

• Can be used to train any networks with a computable energy function;

• Biased due to approximation, but works well and converges in experiments;

• Higher computational cost due to the energy minimization phase.

Properties of MAP propagation

• Applied MAP propagation to train an actor-critic network in four RL tasks;

• The actor-critic network is a two-hidden-layer ANN with 64 and 32 units on

the first and the second hidden layer respectively;

• Significantly faster than the global REINFORCE baseline, and the learning

speed is comparable to backprop;

• Also demonstrated more sophisticated exploration (e.g., no stuck in the task

of mountain car).

An algorithm to reduce the variance of global REINFORCE

Learning Method Local learning rules
Parallel learning 

across layers

No symmetric 

feedback connections

Backprop   

MAP propagation ✓ ✓ 

Global REINFORCE ✓ ✓ ✓

Table 1. Comparison of the biologically plausible properties of different learning rules.

Fig 2 Running average returns over the last 100 episodes in four RL tasks.
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• Asynchronous MAP propagation that can be implemented efficiently with

neuromorphic circuits;

• Different temporal resolution of agents such that the actions of agents can be

extended temporally and become options;

• Investigate biological plausibility and possible neuroscience basis of MAP

propagation.

Future Work
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