
Though it is common to use backprop to train an artificial neural network

(ANN), backprop is generally regarded as biologically implausible.

Alternatively, we can view an ANN as a team of reinforcement learning

(RL) agents by letting each unit implement an RL algorithm that learns via

the same global reward signal1 broadcast uniformly to all the units. In the

simplest case, the units explore independently by means of independent

random noise injected into their actions. Here we use REINFORCE as the RL

algorithm for each unit, and we call this ANN learning method Global

REINFORCE. Williams [1] showed that for feedforward ANNs, this method

changes weights according to an unbiased estimate of the gradient of the

expected global reward signal.

A Long History - Farley and Clark (1954) implemented a team of RL units in

the first simulation of ANN learning on a digital computer. Tsetlin (1973)

introduced teams of RL agents (called learning automata); Narendra and

Thathachar (1974, 2012) surveyed following work; Barto (1985, 1986)

explored this approach to training multi-layer ANNs; and Barto and Jordan

(1987) presented this approach as an alternative to error back propagation,

which had appeared that same year. The simplicity of the approach, along

with its slow learning rate, led some to call it the “naive method” for training

ANNs.

Biological Plausibility - Global REINFORCE, when applied to networks of

Bernoulli-logistic units, gives a three-factor learning rule which depends on a

reward signal in addition to a unit’s input and output signals. This three-factor

learning rule is very similar to reward-modulated spike-timing-dependent

plasticity (R-STDP) observed biologically.

Slow Learning - However, Global REINFORCE is seldom used in practice

due to its large variance and thus the low learning speed. Thus, the goal of

the paper is to review algorithms that improve the learning speed of

global REINFORCE while retaining some degree of biological plausibility.
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Experiment Results
Applied both algorithms to train an actor-critic network in three RL tasks

The actor-critic network is a two-hidden-layer ANN with 64 and 32 units in the

first and the second hidden layer respectively

Both algorithms are significantly faster than the Global REINFORCE

baseline, and the learning speed is comparable to backprop

Running average returns over the last 100 episodes in four RL tasks. REINFORCE, Weight

Max and STE backprop use Bernoulli-logistic units; MAP Prop uses normally distributed units, and

backprop uses Rectified Linear Units (ReLU).

Background: Trainingng an ANN without backprop

1Note that the reward signal can be replaced with the TD error for RL tasks or the 

negative loss for supervised learning tasks

Algorithm: Improving Structural Credit Assignment

We propose two algorithms, namely maximum a posteriori (MAP)

propagation (Chung, 2021) and Weight Maximization (Chung, 2022) , that

reduce the variance of global REINFORCE efficiently.

MAP propagation - MAP propagation replaces the actions of hidden agents

(i.e., agents that are not in the last layer) with their most probable action

conditioned on the action of output agents (i.e., agents in the last layer) and

the state, before applying global REINFORCE. Equivalently, defining the

energy function as the negative log-probability of agents’ action conditioned

on the state, MAP propagation minimizes the energy function of the network

w.r.t. actions of hidden agents before applying REINFORCE.

Weight Maximization - We define the outgoing weight of hidden agent 𝑖 as

the vector of weights connecting from that agent to agents in the next layer.

Weight Maximization replaces the external reward signal 𝑅 to each hidden

agent by the change in the squared 𝐿2 norm of its outgoing weight. This is

based on the heuristic that this norm roughly reflects the contribution of the

agent in the network. For example, if the hidden agent on layer 𝐿 − 1 is useful

in guiding action, then the output agent should learn a large weight

associated with it. With the replaced reward signal, each hidden agent is

trying to maximize the norm of its outgoing weight, or intuitively, its

contribution within the network. This allows a more targeted structural credit

assignment by giving each hidden unit a different reward signal. We prove

that Weight Maximization is approximately following gradient ascent in

rewards in expectation.

Discussion

Learning Rule

Local

learning 

rule

No symmetric 

feedback 

connections

Asynchronous 

computation 

across units

Global REINFORCE ✓ ✓ ✓

MAP Prop. ✓  

Asy. MAP Prop. ✓  ✓

Weight Max. ✓ ✓ 

Weight Max. with traces ✓ ✓ ✓

Backprop   

We also proposed asynchronous versions of MAP Propagation and Weight

Maximization, called asynchronous MAP prop and Weight Maximization with

traces respectively

Derived from global REINFORCE, both algorithms retain certain properties

relevant to biological plausibility of REINFORCE:

Computational advantages – agents trained by MAP prop have more

effective exploration than when RL relies on backprop for learning policies or

value functions; Weight Max. can be applied to train discrete-valued units

instead of only differentiable units

Reward signal

Farley and Clark (1954)
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Example – A single Bernoulli-logistic unit

1. We sample the action from a Bernoulli

distribution A ~ 𝐵𝑒𝑟(𝑝) where 𝑝 = 𝜎(σ𝑖𝑤𝑖𝑆𝑖);

this action 𝐴 is multiplied by the outgoing

weights 𝑣 and passed to the outgoing units

2. As the outgoing units learn2, the outgoing

weight is updated from 𝑣 to 𝑣’ ; we then

compute the reward signal 𝑅 as the change in

the squared L2 norm of the outgoing weight 𝑣

by: 𝑅 = σ𝑖 𝑣𝑖
′2 − σ𝑖 𝑣𝑖

2

3. We apply REINFORCE to update the incoming

weight 𝑤 : 𝑤’ = 𝑤 + 𝛼 𝑅 ∇𝑤 log 𝑃𝑟 𝐴 𝑆; 𝑤 =

𝑤 + 𝛼𝑅 𝐴 − 𝑝
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Notation -

𝑆: Input (Vector)

𝐴: Action (Binary)

𝑅: Reward (Scalar)

𝑤: Incoming weight (Vector)

𝑣: Outgoing weight (Vector)

𝛼: Update step size (Scalar)

𝜎: Sigmoid function

2The actual reward signal requires a slight adjustment to stabilize learning; see paper [8] 

for details
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