
Turing Completeness of Bounded-Precision

Recurrent Neural Networks
Stephen Chung*, Hava T. Siegelmann*

Background & Motivation

Symbolic (such as Turing Machines (TMs)) and sub-symbolic processing (such

as adaptive neural networks) are two competing methods of representing and

processing information. An ultimate way to combine symbolic and sub-symbolic

capabilities is by enabling the running of algorithms on a neural substrate, which

means a neural network that can simulate a Universal Turing Machine (UTM).

Previous works [1-3] have shown that this is possible – there exists a recurrent

neural network (RNN) that can simulate a UTM. These proofs assumed a couple

of neurons with unbounded precision that equals the number of symbols used in

the tape. This capability is enabled due to the use of fractal encoding to encode

the tape symbols by two neurons:

Fig 1 Illustration of fractal encoding. Assume that there are four symbols {A, B, C, D},

which are be encoded by value {0.1, 0.3, 0.5,0.7}. To store the entire left tape (the string of

symbols starting at the symbol under the read/write head and extending to the left) into a

single neuron, we add the tape’s symbols together after shifting one decimal point per

distance from the head, which is 0.1315 in this example. Similar encoding is used for the right

tape (the remaining string of symbols).
References

Previous works have proved that recurrent neural networks (RNNs) are Turing-complete. However, in the proofs, the RNNs allow for neurons with unbounded precision, which is

neither practical in implementation nor biologically plausible. To remove this assumption, we propose a dynamically growing memory module made of neurons of fixed precision.

The memory module dynamically recruits new neurons when more memories are needed, and releases them when memories become irrelevant. We prove that a 54-neuron

bounded-precision RNN with growing memory modules can simulate a Universal Turing Machine, with time complexity linear in the simulated machine's time and independent of

the memory size. The result is extendable to various other stack-augmented RNNs. Furthermore, we analyse the Turing completeness of both unbounded-precision and

bounded-precision RNNs, revisiting and extending the theoretical foundations of RNNs.

Turing Completeness of RNNs

B

0.3

C

0.5

B

0.3

A

0.1

B

0.3

C

0.5

C

0.5

D

0.7

A

0.1

Location of the head

0.1315 0.35571

Left-tape neuron Right-tape neuron

Turing Tape

However, these previous work required the tape neurons to have the same

precision as the size of the active (non-blank) part of the tape, which is usually

not applicable. Therefore, in this paper, we consider how to simulate a UTM with

different forms of bounded-precision RNNs.

From now on, we assume that each neuron can hold at most p symbols.

Therefore, while we still use the fractal encoding introduced before, we divide the

string of symbols to short strings of p symbol :

0.130.53 0.3 0.55 0.71

B

0.3

C

0.5

B

0.3

A

0.1

B

0.3

C

0.5

C

0.5

D

0.7

A

0.1

Location of the headTuring Tape

0.55

0.710.53

Left-tape
stack

Right-tape
stack

Fig 2. Illustration of fractal encoding with bounded-precision neurons. Instead of storing

the whole tape by two neurons, we now use one neuron to store each p=2 symbols.

Right-tape

neuron

Left-tape

neuron

Left-tape

stack

Right-tape

stack

We only keep the two neurons which store values closest to the head in the

RNN, and the other neurons reside in a stack-like memory. We propose a simple

mechanism for the RNN to interact with the stack-like memory by two neurons,

called push (u) and pop (o) neurons, as follows:

*Equal contribution

2. Stack-augmented Bounded-precision RNNs

Stack RNN

u

Pushing

𝑜

Push neuron (u)

Whenever u is non-zero, its value is

pushed to the stack and u is reset to

zero

Pop neuron (o)

Whenever o is zero, the top neuron

in the stack is popped and o gets the

value of the current top neuron in

the stack

We call this stack-like memory a growing memory module. The advantage of

this module is that most neurons there are not updated, saving computational

cost. This module shares similarities with other stack-augmented RNNs

proposed but with a simpler mechanism [4-6], making the proof extendable to

stack-augmented RNNs in general.

tapes (2)

Layer 4

Layer 3

Layer 2

Layer 1

readings (6)

temp tapes (4)

stages (2)

entries (23)

states (3)

selectors(6)

push-pop (4)

buffers (4)

Left-tape

stack
Right-tape

stack

Memory

We show that a 40-neuron unbounded precision network can simulate a

UTM with linear time complexity (Theorem 1), which is the smallest Turing-

complete RNN to date. See Fig 4 for the architecture.

1. Unbounded-precision RNNs

Fig 3. Illustration of how the RNN control pushing and popping of the growing memory

module.

We then prove that a 54-neuron bounded-precision RNN (BP-RNN) with

growing memory modules can simulate a UTM, with time complexity linear

in the simulated machine's time and independent of the memory size

(Theorem 2). The architecture of the 54-neuron RNN, which is based on the 40-

neuron RNN used in Theorem 1, is shown below:

40-neuron RNN used in Theorem 1

Fig 4. The architecture of the Turing-complete 54-neuron RNN with two growing

memory modules. Neurons are grouped according to their respective functions. Notable

neurons include: state neurons - represent the current state; tape neurons - represent the tape

symbols near the head using fractal encoding. The remaining neurons help these two groups

of neurons to be updated correctly to simulate a TM’s transition.

Table 1. The number of neurons required to simulate a UTM. We prove the Turing

completeness of 1. and 2. by showing how it can simulate UTM(4,6), a small UTM proposed

by Neary & Woods [7]. 3. can only simulate space-bounded TM, where F is the space size

and p is the precision of neurons, and so it is not Turing-complete.

Summary

Type of RNNs
Number of neurons

required
Simulated TM

1. Unbounded-precision RNNs 40 Any TM

2. Stack-augmented BP-RNNs 54 Any TM

3. Bounded-precision RNNs (BP-RNNs) 46+10 F/p Space-bounded TM

[1] Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets. Journal of computer

and system sciences, 50(1):132–150, 1995.

[2] Hava T Siegelmann. Computation beyond the turing limit. Science, 268(5210):545–548, 1995.

[3] Hava T Siegelmann. Neural networks and analog computation: beyond the Turing limit. Springer Science &

Business Media, 2012.

[4] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to transduce with

unbounded memory. Advances in neural information processing systems, 28:1828–1836, 2015.

[5] Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent nets.

Advances in neural information processing systems, 28:190–198, 2015.

[6] Ankur Arjun Mali, Alexander G Ororbia II, and C Lee Giles. A neural state pushdown automata. IEEE

Transactions on Artificial Intelligence, 1(3):193–205, 2020.

[7] Turlough Neary and Damien Woods. Four small universal turing machines. Fundamenta Informaticae,

91(1):123?44, 2009.

The paper has three main theorems (for completeness we also simulate a

space-bounded TM by BP-RNNs (Theorem 3)):

	Slide 1

