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Background & Motivation

Though it is common to use backprop to train an artificial neural network

(ANN), backprop is generally regarded as biologically implausible.

Alternatively, we can view an ANN as a team of reinforcement learning

(RL) agents, by injecting stochastic noise to each unit in the ANN and

treating each unit as an RL agent that explores independently. For

example, in an RL task, when learning the policy function parametrized by

an ANN, we can view the ANN as the policies of multiple RL agents

instead of a single agent:

Fig 1 Illustration of viewing an ANN as a team of agents. In the alternative view,

we treat each unit in an ANN as an agent. To each agent, all other agents are part

of the black-box environment. For example, to the agents on the middle layer, the

actions of agents on the first layer are considered as the state.

An artificial neural network can be trained by uniformly broadcasting a reward signal to units that implement a REINFORCE learning rule.

Though this presents a biologically plausible alternative to backpropagation in training a network, the high variance associated with it

renders it impractical to train deep networks. The high variance arises from the inefficient structural credit assignment since a single reward

signal is used to evaluate the collective action of all units. To facilitate structural credit assignment, we propose replacing the reward signal

to hidden units with the change in the 𝐿2 norm of the unit's outgoing weight. As such, each hidden unit in the network is trying to maximize

the norm of its outgoing weight instead of the global reward, and thus we call this learning method Weight Maximization. We prove that

Weight Maximization is approximately following the gradient of rewards in expectation. In contrast to backpropagation, Weight Maximization

can be used to train both continuous-valued and discrete-valued units. Moreover, Weight Maximization solves several major issues of

backpropagation relating to biological plausibility. Our experiments show that a network trained with Weight Maximization can learn

significantly faster than REINFORCE and slightly slower than backpropagation. Weight Maximization illustrates an example of cooperative

behavior automatically arising from a population of self-interested agents in a competitive game without any central coordination.
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From this alternative view, we can pass the same reward from the

environment to all agents and train them by REINFORCE [1,2]. Denoting

the reward2 by 𝑅 and the step size by 𝛼, the learning rule becomes:

𝑊𝑙 ← 𝑊𝑙 + 𝛼 𝑅 ∇𝑊𝑙 log𝑃𝑟 𝐻𝑙 𝐻𝑙−1; 𝑊𝑙 ,

where 1 ≤ 𝑙 ≤ 𝐿 and 𝐿 is the number of layers. We call this learning

method global REINFORCE. Global REINFORCE gives an unbiased

estimate of the gradient of reward [1,3], and is biologically plausible due to

its similarity with reward-modulated STDP, a learning rule that is observed

biologically.

1Special thanks to Andrew G. Barto, who inspired this research and provided 

valuable comments on the research
2Note that the reward 𝑅 can be replaced with the TD error for RL tasks or the 

negative loss for supervised learning tasks

Weight Maximization

Despite its biological plausibility, global REINFORCE is seldom used in

practice due to its large variance and thus the low learning speed. Thus,

the goal of the paper is to reduce the variance of global REINFORCE

while retaining biological plausibility.

Key Ideas of Weight Maximization The parameter update in global

REINFORCE has a large variance since a scalar signal 𝑅 is used to

evaluate the activation values of all units. Is it possible to replace this

scalar reward signal 𝑅 with another signal that is directly influenced by

and tailored to individual unit?

Let define the outgoing weight of hidden unit 𝑖 on layer 𝑙 by the vector

𝑊:,𝑖
𝑙+1, i.e. the weights connecting from that unit to units on the next layer3.

A heuristic is to use the change in the 𝑳𝟐 norm of the unit’s outgoing

weight as the reward signal (note that the next layer is also learning, so

the outgoing weight changes on every step). This is motivated by the idea

that the norm of a unit's outgoing weight roughly reflects the contribution

of the unit in the network (imagine that you are asked to remove a neuron

from a network, and there is a neuron with a zero outgoing weight).

Details of Weight Maximization The new reward signal to hidden unit 𝑖

on layer 𝑙 can thus be expressed as (Δ𝑊𝑙+1 denotes the change in

𝑊𝑙+1 before multiplying the step size 𝛼):

||𝑊:,𝑖
𝑙+1 + 𝛼Δ𝑊:,𝑖

𝑙+1||2
2 − ||𝑊:,𝑖

𝑙+1||2
2 = 2 𝛼Δ𝑊:,𝑖

𝑙+1 ⋅ 𝑊:,𝑖
𝑙+1 + Ο 𝛼2 .

We propose to ignore Ο 𝛼2 since the step size 𝛼 is usually very small.

This leads to the following learning rule of Weight Maximization for all

layer 𝑙 and unit 𝑖:

𝑅𝑖
𝑙 = ൝

2 𝛼Δ𝑊:,𝑖
𝑙+1 ⋅ 𝑊:,𝑖

𝑙+1 𝑓𝑜𝑟 𝑙 ∈ {1, 2, … , 𝐿 − 1},

𝑅 𝑓𝑜𝑟 𝑙 = 𝐿,

Δ𝑊𝑖,:
𝑙 = 𝑅𝑖

𝑙 ∇
𝑊𝑖,:

𝑙 𝑙𝑜𝑔𝑃𝑟 𝐻𝑖
𝑙 𝐻𝑙−1;𝑊𝑙 ,

𝑊𝑙 ← 𝑊𝑙 + 𝛼ΔWl.

Note that we do not change the reward signal to the output unit. In the 

paper, we prove that Weight Maximization is approximately following 

gradient ascent in 𝑅 in expectation.

Experiment Results

Reducing the variance of global REINFORCE

Fig 2 Episode returns in different RL tasks. All networks have 64 units on the

first hidden layer and 32 units on the second hidden layer. Except backprop which

uses standard ReLu units, all other algorithms use Bernoulli-logistic units.
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3 We use 𝐴𝑖,: and 𝐴:,𝑗 to denote the 𝑖th row and 𝑗th column of the matrix 𝐴 resp. 

For all 𝑙, we assume 𝑊𝑙 is a matrix, and 𝑃𝑟 𝐻𝑖
𝑙 𝐻𝑙−1;𝑊𝑙 = ς𝑖 𝑓(𝐻𝑖

𝑙 ,𝑊𝑖,:
𝑙 𝐻𝑙−1)

for some differentiable function 𝑓.

Properties of Weight Maximization
• Can be combined with eligibility traces to remove the iteration

requirement and enable the algorithm to be implemented

asynchronously across units (note that Weight Maximization

requires iterating backward from the top layer when computing the

reward signal);

• Can be applied to any discrete units (even black box discrete units)

and continuous units, though experiments show that Weight

Maximization works better with discrete units;

• The approximation error in gradient ascent can be mitigated by

weight regularization / weight decay.

Learning Rule
Local learning 

rules

No symmetric 

feedback 

connections

Asynchronous 

computation 

across units

Backprop   

Weight Max. ✓ ✓ 

Weight Max. with traces ✓ ✓ ✓

Global REINFORCE ✓ ✓ ✓

Table 1. Comparison of the properties relating to biological plausibility.

• Paradoxical - every units maximizing their own interest (the norm of

outgoing weight) also approximately maximize the interest of the

whole network;

• Invisible hand in economy: society's interest as a whole can be

maximized when individuals seek to maximize their own interest;

• Another relationship with biological neurons - when a brain area is

damaged, the upstream neurons to that brain area will try to seek

new target neurons to innervate.


