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Abstract

Though backpropagation underlies nearly all deep learning algorithms, it is generally regarded as being biologically
implausible. An alternative way of training an artificial neural network is through making each unit stochastic and
treating each unit as a reinforcement learning agent, and thus the network is considered as a team of agents. As such, all
units can learn via REINFORCE, a local learning rule modulated by a global reward signal that is more consistent with
biologically observed forms of synaptic plasticity. However, this learning method suffers from high variance and thus
the low speed of learning. The high variance stems from the lack of effective structural credit assignment. This paper
reviews two recently proposed algorithms to facilitate structural credit assignment when all units learn via REINFORCE,
namely MAP Propagation and Weight Maximization. In MAP Propagation an energy function of the network is minimized
before applying REINFORCE, such that activities of hidden units are more consistent with the activities of output units.
In Weight Maximization the global reward signal to each hidden unit is replaced with the change in the squared L2

norm of the vector of the unit’s outgoing weights, such that each hidden unit is trying to maximize the norm of its
outgoing weights instead of the external reward. Experiments show that both algorithms can learn significantly faster
than a network of units learning via REINFORCE, and have a comparable speed to backpropagation when applied
in standard reinforcement learning tasks. In contrast to backpropagation, both algorithms retain certain biologically
plausible properties of REINFORCE, such as having local learning rules and the ability to be computed asynchronously.
Therefore these algorithms may offer insights for understanding possible mechanisms of structural credit assignment in
biological neural systems.
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Overview

The error backpropagation algorithm (backprop) efficiently computes the gradient of an objective function with respect to
parameters by iterating backward from the last layer of a multi-layer artificial neural network (ANN). However, back-
prop is generally regarded as being biologically implausible [1]. First, the learning rule given by backprop is non-local,
as it relies on a feedback signal backpropagating from the downstream units, while biologically-observed synaptic plas-
ticity depends mostly on local information (e.g. spike-timing-dependent plasticity (STDP) [2]) and possibly some global
signals, e.g. reward-modulated spike-timing-dependent plasticity (R-STDP) [2]. Second, to compute the feedback signal,
backprop requires synaptic symmetry in the forward and backward paths, which has not been observed in biological
systems. Third, backprop cannot be implemented asynchronously across units since it requires the network to alternate
precisely between the feedforward and feedback phase, and the feedback signal has to be backpropagated layer-by-layer.
Nonetheless, recent work has shown that these issues may be overcome. For example, the feedback signal in backprop
may be approximated locally by the difference in neural activities across time [3], and synaptic symmetry may not be
necessary for backprop due to the ‘feedback alignment’ phenomenon [4], but asynchronous computation remains a major
obstacle to biological plausibility.

Alternatively, each unit in an ANN can be made stochastic and learn via the REINFORCE learning rule [5], a special
case of AR−λP when λ = 0 [6]. This learning method has also been called ‘node perturbation’ [3], and is generally
considered more biologically plausible than backprop. REINFORCE, when applied on Bernoulli-logistic units, gives
a three-factor learning rule which depends on a reward signal in addition to a unit’s input and output signals. This
three-factor learning rule is closely related to R-STDP, which depends on pre-synaptic and post-synaptic activity plus a
neuromodulatory input [7, Chapter 15]. Since the only non-local information required by the REINFORCE learning rule
is the globally broadcasted reward signal, the three aforementioned issues of backprop regarding biological plausibility
do not exist when all units learn via REINFORCE.

Another interpretation of training all units by REINFORCE relates to viewing each unit as a reinforcement learning (RL)
agent, with each agent trying to maximize the same reward signal from the environment. We can thus view an ANN as
a team of agents playing a cooperative game, a scenario where all agents receive the same reward; agents here refer to RL
agents [7]. Such a team of agents is also known as coagent network [8]. The idea of solving a task by a team of agents has a
long history, and we refer readers to [7, Chapter 15] for the related work. However, due to the weak correlation between
the team’s reward signal and the action of an agent in the team, this learning method is associated with high variance
and thus the low speed of learning. The high variance stems from the lack of effective structural credit assignment.

This paper reviews two recently proposed algorithms, namely MAP Propagation [9] and Weight Maximization [10], that fa-
cilitate structural credit assignment when training all units by REINFORCE. MAP propagation replaces the hidden units’
outputs with their maximum a posteriori (MAP) estimates conditioned on the state and the selected action, or equiva-
lently, minimizes an energy function of the network, before applying REINFORCE. For a network of normally distributed
units (that is, an ANN with i.i.d Gaussian noise being added to the activation value of each unit), by minimizing the en-
ergy function of the network, the parameter update given by REINFORCE and backprop with the reparametrization
trick becomes the same, thus establishing a connection between REINFORCE and backprop. In Weight Maximization
we replace the global reward signal to each hidden unit with the change in the squared L2 norm of its outgoing weight,
which is defined as the vector of the weights by which the unit’s outputs influence other units in the network. With
the replaced reward signals, each hidden unit in the network is trying to maximize the norm of its outgoing weight.
We prove that Weight Maximization approximately follows the gradient of reward in expectation, showing that every
hidden unit maximizing the norm of its outgoing weight also approximately maximizes the external reward.

Our experiments show that ANNs trained with MAP Propagation or Weight Maximization can learn much faster than
REINFORCE, such that the learning speed is comparable to backprop on standard RL tasks1. The experimental results
are shown in Fig 1. It is worth noting that both MAP Propagation and Weight Maximization only assume a scalar
reward signal from the environment, so they are more suitable for RL tasks instead of supervised learning (SL) tasks. It
remains to be investigated how to best incorporate the knowledge of optimal network outputs into both algorithms for
competitive performance in SL tasks.

MAP Propagation and Weight Maximization retain certain properties relevant to biological plausibility of REINFORCE,
but neither algorithms can be implemented asynchronously. Alternative versions of MAP Propagation and Weight Max-
imization that allow asynchronous computation have been proposed. In asynchronous MAP Propagation (to be published)
the feedforward phase is merged with the energy minimization phase to remove the requirement of alternating be-
tween phases. In Weight Maximization with traces [10] eligibility traces are employed to remove the need of waiting for
downstream units to finish updating. A comparison of different biologically inspired algorithms according to biological
plausibility properties is summarized in Table 1. Nonetheless, other properties relevant to biological plausibility of these

1To be precise, REINFORCE here refers to the case of all units implementing the REINFORCE learning rule, and backprop here
refers to the case of output units implementing the REINFORCE learning rule and hidden units implementing backprop.
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Figure 1: Episode returns in different RL tasks. Results are averaged over 10 independent runs, and shaded areas repre-
sent standard deviation over the runs. Curves are smoothed with a running average of 100 episodes. All networks have
64 and 32 units on the first and the second hidden layer respectively. REINFORCE, Weight Max and STE backprop use
Bernoulli-logistic units; MAP Prop uses normally distributed units, and backprop uses Rectified Linear Units (ReLU).
Hyper-parameters are selected based on manual tuning to optimize the average episode returns.

Algorithm Type Local learning rule
No symmetric

feedback
connections

Asynchronous
computation
across units

REINFORCE [5] RL ✓ ✓ ✓
MAP Propagation [9] RL ✓ ✗ ✗
Asy. MAP Propagation RL ✓ ✗ ✓
Weight Max. [10] RL ✓ ✓ ✗
Weight Max. with traces [10] RL ✓ ✓ ✓
Backprop SL ✗ ✗ ✗
Equilibrium Propagation [11] SL ✓ ✗ ✗
Target Propagation [12] SL ✓ ✓ ✗

Table 1: Comparison of biologically inspired algorithms on properties relevant to biological plausibility. Algorithm
type: RL (Reinforcement Learning) - the algorithm only assumes the knowledge of a scalar reward signal from the
environment; SL (Supervised Learning) - the algorithm assumes the knowledge of optimal network outputs from the
environment. We call a learning rule local if it only depends on local variables (incoming weights, outgoing weights,
activation values of the unit, incoming units, and outgoing units) and possibly a global scalar variable (e.g. reward
signal in R-STDP). Backprop requires an error signal propagating from the outgoing units, so it is not local. Note that
backprop can be combined with REINFORCE to train hidden units in RL tasks as in most deep RL algorithms.

algorithms remain to be investigated. For example, it is not yet clear if there exists a mechanism that allows changes in
the efficacies of a neuron’s outgoing synapses to influence changes in its incoming synapses.

From the computational perspective, MAP Propagation and Weight Maximization offer different advantages and disad-
vantages compared to backprop. Experiments showed that an ANN trained with MAP Propagation is less likely than
bcakprop to become stuck in local optima in the MountainCar task [9], suggesting that stochastic activities of all units
may lead to more effective exploration. However, each iteration of MAP Propagation is computationally more costly
compared to each iteration of backprop due to the energy minimization phase. For Weight Maximization, experiments
showed that it performs well when applied to discrete units such as Bernoulli-logistic units but performs poorly when
applied on continuous units. Nonetheless, the ability to efficiently train discrete units and to localize optimization to
each network unit may open the door to other RL methods for training ANNs.

By showing the possibility of efficient credit structural assignment, we hope that this work reinvigorates interest in
training an ANN by REINFORCE alone, a biologically plausible method that has long been considered too slow for
learning compared to backprop.
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Algorithms

For simplicity, we consider an MDP with only immediate reward2 defined by a tuple (S,A, R, d0), where S is the set of
state, A is the set of action, R : S × A → R is the reward function, and d0 : S → [0, 1] is the initial state distribution.
Denoting the state, action, and reward by S, A, and R respectively, Pr(S = s) = d0(s) and E[R|S = s,A = a] = R(s, a). We
are interested in learning the policy π : S × A → [0, 1] such that selecting actions according to Pr(A = a|S = s) = π(s, a)
maximizes the expected reward E[R|π].

Here we restrict attention to policies computed by a multi-layer ANN consisting of L layers of stochastic units. Let H l

denote the vector of activation values of layer l. We also let H0 := S and HL := A. For all 1 ≤ l ≤ L, the distribution
of H l conditional on H l−1 is given by Pr(H l

t = hl|H l−1
t = hl−1;W l) = πl(h

l−1, hl;W l), where W l is the parameter of
layer l. We further assume3 W l is a matrix and πl(h

l−1, hl;W l) =
∏

i f(h
l
i,W

l
:,ih

l−1) for some differentiable function f .
To sample an action A from the network, we iteratively sample H l ∼ πl(H

l−1, ·;W l) from l = 1 to L.

The gradient of reward with respect to W l (where l ∈ {1, 2, ..., L} in all discussion below unless stated otherwise) can be
estimated by REINFORCE [5] :

∇W l E[R|π] = E[R∇W l log π(S,A)|π] = E[R∇W l log πl(H
l−1, H l;W l)|π]. (1)

Therefore, to perform gradient ascent on the reward, we can update parameters by adding αR∇W l log π(S,A) to W l,
where α is the step size. ∇W l log π(S,A) can be computed by backprop for deterministic and differentiable ANNs,
or backprop with the reparametrization trick for some stochastic and continuous ANNs (e.g. a network of normally
distributed units). For stochastic and discrete ANNs (e.g. a network of Bernoulli-logistic units), ∇W l log π(S,A) cannot
be computed by backprop or backprop with the reparametrization trick. But the second equality tells us that we can also
update parameters by applying REINFORCE locally to all units:

W l ←W l + αR∇W l log πl(H
l−1, H l;W l). (2)

This learning rule can applied in any stochastic ANNs. However, the parameter update in this learning rule has a large
variance since a single reward R is used to evaluate the collective actions of all units. In the following we discuss two
algorithms that help reduce this variance.

MAP Propagation - Let define an energy function by E(h1, h2, ..., hL; s) := − logPr(H1 = h1, H2 = h2, ...,HL = hL|S =
s). That is, the energy function measures the lack of compatibility between hidden units and output units. MAP Propa-
gation minimizes the energy function of the network w.r.t. hidden units, before applying REINFORCE:

W l ←W l + αR∇W l log πl(ĥ
l−1, ĥl;W l), (3)

where ĥ1, ĥ2, ..., ĥL−1 = argminh1,h2,...,hL−1 E(h1, h2, ..., hL−1, HL;S) and ĥL = HL. In other words, we try to make
the activation values of hidden units to be more compatible with the selected action before applying REINFORCE. This
energy minimization is equivalent to replacing the activation values of hidden units by their most probable activation
values conditioned on the state and the selected action (i.e. MAP inference).

To intuitively understand how MAP Propagation improves learning, consider the following example. Suppose you are
playing a computer game and there are two buttons (button A and B) on the controller, corresponding to action A and B.
However, the controller is faulty and there is a 5% probability that the computer receives the opposite action. Suppose
you pressed button A, and the computer game gave you a positive reward but showed that it received action B. Should
you press button A or B more? You can learn in the long term by simply pressing the button associated with a positive
reward more, which is button A in this case. But a more efficient way of learning is to press button B more since it
is more likely that you have pressed button B. This example underlies the core idea of MAP Propagation - the most
probable activation values of hidden units can replace their actual activation values in REINFORCE to speed up learning
(see paper for detailed theoretical analysis).

The remaining question is how to minimize the energy function w.r.t. hidden units. For continuous-valued units, we
can perform gradient descent on the energy function, and the update rule can be shown to be local. For discrete-valued
units, we can use hill climbing methods or iteratively compute the minima for each unit.

Weight Maximization - Let define the outgoing weight of hidden unit i on layer l by the vector W l+1
i,: (the ith row of

matrix W l+1), i.e. the weights connecting from that unit to units on the next layer. Weight Maximization uses a different

2The algorithms in this paper can be applied in general MDPs by replacing the reward with the sum of discounted reward (i.e.
return) or TD error, and can be applied in supervised learning tasks by replacing the reward with the negative loss.

3This assumption is not necessary for MAP Propagation.
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approach from MAP Propagation. In learning rule (2), all units receive the same reward signal R. It is natural to ask
whether there exists a more specific signal that evaluates the activation value of each unit, such that a more precise
structural credit assignment is possible. Inspired by this idea, Weight Maximization replaces the external reward signal
R to each hidden unit by the change in the squared L2 norm of its outgoing weight. The motivation of using the change
in the norm of a unit’s outgoing weight as a reward signal is based on the idea that the norm of a unit’s outgoing weight
roughly reflects the contribution of the unit in the network. For example, if the hidden unit is useful in guiding action,
then the output unit will learn a large weight associated with it. Conversely, if the hidden unit is outputting random
noise, then the output unit will learn a zero weight associated with it.

Assuming that the next layer is also learning, the outgoing weight W l+1
i,: changes on every step, and we denote this

change (before multiplying the step size α) by ∆W l+1
i,: . Thus, the change in the squared L2 norm of the outgoing weight

can be expressed as (· denotes the dot product):

||W l+1
i,: + α∆W l+1

i,: ||
2
2 − ||W l+1

i,: ||
2
2 = 2α∆W l+1

i,: ·W
l+1
i,: +O(α2). (4)

We propose to ignore O(α2) since the step size is usually very small, and thus we define the reward signal to unit i on
layer l by:

Rl
i :=

{
2α∆W l+1

i,: ·W
l+1
i,: for l ∈ {1, 2, ..., L− 1},

R for l = L.
(5)

The learning rule is the same as (2) but with the new reward signal (W l
:,i denotes the ith column of matrix W l):

W l ←W l + α∆W l,where ∆W l
:,i = Rl

i∇W l
:,i
log πl(H

l−1, H l;W l). (6)

(5) and (6) together defines the learning rule for all units in Weight Maximization. It can be proved that the update rule
is still approximately following the gradient of rewards in expectation.

However, (5) and (6) require iterating backward from the top layer since units need to wait for the upper layer to finish
learning to compute the reward Rl

i. To remove this iteration requirement, we consider the case where all units are
learning at the same time step. Then, it can be seen that the reward signal to a unit on layer l is delayed by L − l time
steps as there are L − l upper layers and each layer requires one time step to update. The problem of delayed reward is
well studied in RL, and one prominent and biologically plausible solution is eligibility traces. By using eligibility traces,
the algorithm can be implemented in parallel for all layers, and there are no distinct feedforward and feedback phases
for the whole network (see paper for details of Weight Maximization with eligibility traces).
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